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Kinetics of crystallization in hard-sphere colloidal suspensions
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We propose a kinetic model for describing crystal nucleation kinetics in hard-sphere colloidal suspensions.
The model captures the interplay between the enhanced thermodynamic driving force and the reduced particle
diffusivity in determining crystal nucleation rates as the particle density is increased in hard-sphere suspen-
sions. Model calculations of nucleation rates and crystal growth velocities agree quantitatively with experi-
mental observations. The dependence of the critical cluster size on volume fraction that emerges differs
qualitatively from predictions of classical theories allowing for an experimental validation of the mechanism of
crystal nucleation in colloidal suspensions.
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I. INTRODUCTION

Promising technological and scientific advances, such
the manufacture of photonic band gap materials and the
termination of protein structures through x-ray crystallog
phy, hinge on our ability to control colloidal crystallizatio
@1,2#. Ongoing efforts to establish crystallization protoco
have resulted in an understanding of the equilibrium ph
behavior of large classes of colloidal suspensions, includ
hard spheres, proteins, globular macromolecules, and m
tures of colloids and polymers@3–10#. On the other hand, the
kinetics associated with these phase transitions rem
poorly understood. Classical nucleation theory is often
voked for predicting steady state nucleation rates during
loidal crystallization@11–15#. Comparisons between exper
mental results and model calculations show discrepan
that cannot be attributed easily to approximations in the
or uncertainties in experiment@11,16,17#. This is especially
true of systems where particles have attractions. Even
hard spheres, where the phase diagram is well establis
the rates of crystal nucleation and growth are difficult
predict@18#. As a result, colloidal crystals are often produc
by highly empirical methods.

With the simplest of phase diagrams, suspensions of h
sphere~HS! colloids are useful for studying the kinetics o
colloidal crystallization. Here, only solid/fluid phase tran
tions are observed and the driving force for this order
transition is controlled by a single parameter, the parti
volume fraction,f. The freezing boundary occurs atfs
50.495. Forf.fs , crystals with random stacking of hex
agonal close-packed planes~rhcp! are seen in microgravity
whereas due to the inability to completely density ma
particles and the fluid, mixtures of face-centered-cubic~fcc!
and rhcp arrangements occur under terrestrial condit
@19#. Due to the absence of particle interactions, except
an infinite repulsion at contact, crystallization in HS susp
sions is entropic, with temperature playing no direct role
inducing phase changes. Cheng, Russel, and Chaikin dem
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strated, however, that temperature gradients can induce c
tallization indirectly, by altering the mechanical stability o
the system, and allow for control of the crystallization pr
cess @20#. Crystallization can be suppressed by rapid
creases inf abovefs @5#. A HS glass results atf'0.58. At
this volume fraction suspensions are observed to be no
godic.

Nucleation rates, crystal growth velocities, and inducti
times have been measured for crystallization in HS susp
sions @15,16,18,21–24#. At low volume fractions,f*fs ,
the kinetics of the phase transition is dictated predomina
by the thermodynamic driving force for crystallization, viz
the difference in the free energies of the solid and the fl
phases. Upon increasingf abovefs , the driving force in-
creases and, accordingly, nucleation rates and growth ve
ties increase, and induction times decrease. At higher volu
fractions,f'0.58, hydrodynamic effects begin to dominat
Due to crowding, the diffusivity of the particles in suspe
sion decreases. In this volume fraction regime, the rate
particle reorganization is a stronger function of volume fra
tion than the thermodynamic driving force. As a resu
nucleation rates and growth velocities decrease, and ind
tion times increase with increasingf. These effects produce
a maximum in the nucleation rate atf'0.56.

Recently, with the particular aim of quantifying this com
petition between the thermodynamic and hydrodynamic
fects, Russel adapted classical nucleation theory to desc
crystal nucleation in HS suspensions@11#. In this approach,
the nucleation rate is written asI 5A exp(2DG), whereDG
is the free energy barrier to crystal formation, andA is the
prefactor characterized by the diffusivity of the particles
suspension. While classical theory is known to provide
curate expressions forDG, the prefactorA remains ambigu-
ous@11#. Russel builds approximations for the long time a
short time self-diffusivities of the particles in dense HS su
pensions to determineA. Predictions of nucleation rates an
growth velocities using these approximations agree qua
tively with experiments@11,16#.

In a subsequent study, Ackerson and Schatzel argue
crystal formation and growth are not governed by the part
self-diffusivity but by the particle gradient diffusivity@12#.
Their calculations suggest that the formation of a crys

ail
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NARENDRA M. DIXIT AND CHARLES F. ZUKOSKI PHYSICAL REVIEW E64 041604
nucleus depletes the suspension of particles in the immed
vicinity of the crystal surface. A concentration gradient fro
the bulk suspension to the crystal surface is therefore es
lished. Particles diffuse down this concentration gradient
are incorporated onto the crystal surface during nuclea
and growth. The rates of these processes are controlle
the particle gradient diffusivity as opposed to the se
diffusivity. By incorporating these ideas in their adaptati
of the classical theory, they find qualitative agreement
tween their predictions and experimental measurement
crystal growth rates. These studies and others@15,24# dem-
onstrate that classical nucleation theory can predict nu
ation rates during colloidal crystallization.

In making these predictions, the classical approach bu
much of the kinetics of crystal nucleation in equilibriu
thermodynamics. Indeed, in this lies the beauty of the c
sical approach. Nucleation, however, is an inherently kine
phenomenon. Crystals do not appear spontaneously bu
formed from particle aggregation and dissociation proces
We are interested ultimately in understanding the proces
which crystals nucleate and grow, as this is important
interpreting light scattering data that determine induct
times and crystal growth velocities used for characteriz
nucleation kinetics. For this purpose, we are interested
developing a purely kinetic approach to describing colloi
crystallization.

In our previous work@25#, the kinetic nucleation mode
proposed by Narasimhan and Ruckenstein@26# is adapted for
systems where particles experience short-ranged attract
In this approach, independent calculations of the rates of
aggregation and dissociation processes lead to prediction
nucleation rates and crystal growth velocities. The mo
captures much of the underlying physics of crystal nuc
ation but fails dramatically in quantitative comparisons w
experimental data. This may be attributed to a series of
sumptions made in the model that determine how stron
particles are bound to crystal surfaces. A second failure
the model as currently developed is that it cannot pre
nucleation rates in purely repulsive systems, e.g., elec
statically stabilized or hard-sphere systems, where the or
ing transition results from an increase in particle entropy
the crystalline phase over that in the fluid phase.

In this paper, we extend this kinetic model to the case
hard spheres. For this we note that although two isolated
particles experience only volume exclusion interactio
when they are near each other in a dense suspension
experience a net attraction induced by local ordering, as
dicated by the strong peak in the radial distribution functio
g(r ), at contact@27#. We assume that this attraction drive
crystallization in HS suspensions in a manner identica
that in attractive systems. This allows the extension of
current description of crystal nucleation to HS suspensio
Accurate quantitative predictions of nucleation rates, ho
ever, require a more sophisticated description of the cry
structure. Two terms of critical significance are involve
One is the number of nearest neighbors of particles o
crystal surface. The number of nearest neighbors determ
the strength of the bonds holding the particles on the cry
surface. In the limit of infinitely large crystals, this number
04160
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set from estimates of the solid/fluid surface tension for
systems. In the other limit where only two particles cons
tute a crystal nucleus, the number of nearest neighbors is
by assuming that particles in such a crystal have the s
number of nearest neighbors as particles in the bulk flu
How the number of nearest neighbors varies between th
limits is not known. Approximating this size dependence
troduces an adjustable parameter in our model. A sec
term of significance is the particle volume fraction in th
depletion zone just outside the crystal surface. This mus
below that in the bulk if there is to be a diffusional flux to th
surface, as has been hypothesized by Ackerson and Sch
@12#. Again, the equilibrium value is determined by requirin
that infinitely large crystals do not grow or shrink. Howeve
the dependence of this surface packing fraction on the b
volume fraction remains unknown. We develop an appro
mation for this variation, which introduces a second noneq
librium parameter in our model. We show that these t
parameters can be chosen by fitting crystal growth rate d
and that once chosen, they predict nucleation rates wel
addition, we show that these parameters can be linked to
size and volume fraction dependence of the crystal/fluid s
face tension—parameters commonly used for adjusting c
sical nucleation rate models to fit experimental data.

The paper is organized as follows. Below, in Sec. II, w
briefly outline the equilibrium thermodynamics of HS su
pensions. In Sec. III, we present a description of the cry
structure adopted in our model. In Sec. IV, we describe
method for calculating the aggregation and dissociat
rates, leading to calculations of steady state nucleation r
and growth velocities. In Sec. V, we present calculations
nucleation rates and growth velocities and compare th
with experimental results. In Sec. VI, we draw conclusion

II. EQUILIBRIUM THERMODYNAMICS

A description of the equilibrium thermodynamics of H
suspensions is largely derived from computer simulatio
The osmotic pressure of the fluid phase,Pf , is well approxi-
mated by the Carnahan–Starling equation of state@28#

4pa3Pf

3fkT
5

11f1f22f3

~12f!3 , ~1!

wherea is the radius of the colloidal particles in suspensio
f their volume fraction, andkT the product of the Boltzmann
constant and the absolute temperature. An equation of s
for the solid phase determined from computer simulatio
for a fcc crystal is given by@29#

4pa3Ps

3fxtalkT
5

2.17

0.7382fxtal
, ~2!

wherefxtal is the packing fraction in the solid phase. Give
an equation of state, the chemical potential of the cor
sponding phase is determined as@11,12#

m

kT
5E S 4pa3P

3fkT
21D df

f
1

4pa3P

3fkT
1C, ~3!
4-2
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KINETICS OF CRYSTALLIZATION IN HARD-SPHERE . . . PHYSICAL REVIEW E 64 041604
whereC is an arbitrary constant.
At equilibrium, the pressures and the chemical potent

of the solid and the fluid phases must be equal. This prov
two equations for determining the volume fractions of t
coexisting solid and fluid phases. At equilibrium, these v
ume fractions are 0.55 and 0.495, respectively. The fl
phase volume fraction at equilibrium sets the solubil
boundary,fs50.495, marking the onset of crystallization.

In a suspension of volume fractionf.fs , crystals of
volume fractionfxtal are formed. Whilefxtal.f initially,
the crystals eventually relax to the equilibrium volume fra
tion of 0.55 forfs,f,0.55, orf for f.0.55, as has bee
suggested by the work of Ackerson and Schatzel@12# and
Palberg@15#. In the ensuing discussion, we are interested
knowing the volume fractionfxtal of a growing crystal, away
from equilibrium. As an approximation, we determinefxtal
from the condition of mechanical equilibrium, by equatin
the pressures in the solid and the fluid phases. This yiel

fxtal5
0.738

11
2.17~12f!3

~11f1f22f3!f

. ~4!

The resulting dependence offxtal on f is shown in Fig. 1.
Experimental evidence of this approximation is provided
Harland and van Megen@24# who estimatefxtal and f as
crystallization progresses. They find that their data, at s
times and initial volume fractions,f.0.55, are captured wel
by Eq. ~4!. Note that for allf.fs ,fxtal.f. Therefore, as
crystals nucleate, the average volume fraction in the fl
decreases belowf. In the coexistence region, i.e.,fs,f
,0.55, as time proceeds,f approachesfs and fxtal ap-
proaches 0.55. Mass conservation then determines the
tion of the initial suspension converted to crystals. Outs
the coexistence region, i.e.,f.0.55, where 100% conver
sion from fluid to crystal is observed@16#, as time proceeds

FIG. 1. Crystal packing fraction determined via Eq.~4! as a
function of the volume fraction in the fluid phase.
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crystals expand fromfxtal to f, and the fluid phase disap
pears. In the ensuing discussion, these ripening processe
assumed to occur over time scales much larger than the
scale for crystal nucleation and are therefore neglected. C
tals at packing fractionsfxtal given by Eq.~4! are assumed to
nucleate in background suspensions of volume fractionf
which do not vary with time.

III. CRYSTAL STRUCTURE

Classical theories employ a continuum description
crystal nuclei, with a sharp interface separating the crys
from the surrounding fluid. Such a description is adequ
for determining the energetics of crystal formation, fro
which nucleation rates and growth velocities can be p
dicted. In the kinetic model presented here, accurate de
mination of the aggregation and dissociation rates of p
ticles onto and from a crystal surface is crucial for accur
predictions of nucleation rates and requires a more deta
description of the crystal structure.

The crystal structure employed in our calculations
shown in Fig. 2. A crystal of radiusR, consisting of uni-
formly distributed particles of radiia, is assumed to have
crystalline core of radiusR-a at a volume fractionfxtal ,
determined from Eq.~4!. This core is surrounded by a liquid
like surface layer of thicknessa, at a packing fractionfR .
The volume fraction of particles in the suspension rises fr
fR at the crystal surface tof in the bulk suspension at larg
distances from the crystal.

FIG. 2. The crystal structure assumed in our model consistin
a dense crystalline core of radiusR-a at a packing fractionfxtal

surrounded by a rare surface layer of thicknessa ~equal to the
radius of a single particle! at a packing fractionfR . The volume
fraction in the fluid phase rises fromfR at the crystal surface to the
bulk volume fraction,f, at large distances from the crystal.
4-3
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NARENDRA M. DIXIT AND CHARLES F. ZUKOSKI PHYSICAL REVIEW E64 041604
Sincefxtal.f, a depletion zone is formed adjacent to t
crystal surface. As a consequence, we expect that the pac
fraction in the fluid in the depletion zone to be smaller th
f ~i.e., fR,f!. This results in a diffusional flux of particle
from the bulk suspension to the crystal surface. Sincefxtal
varies withf, we postulate thatfR varies withf as well.
When f5fs50.495, i.e., at the solubility point, we writ
fR5fRS. As discussed below, we determinefRS by requir-
ing that at the solubility point no stable clusters can
formed. Whenf5f rcp50.64, i.e., when the bulk fluid is
randomly close packed, compaction of a certain region in
bulk fluid to a crystalline structure with a packing fractio
fxtal is prevented due to the jamming of the particles. At t
point, a distinct depletion zone ceases to exist, so that,fR
5f5f rcp50.64. Forfs,f,f rcp, the dependence offR
on f is assumed to be of the form

fR5fRS5~f rcp2fRS!expH j~f2f rcp!

~f2fs!
J , ~5!

wherej is an adjustable parameter chosen as discussed
low. In this description, we assumefR to be independent o
R. We note that the functional form of Eq.~5! is arbitrary. We
chose this function as a smooth interpolation between
two known limits with a single adjustable parameterj.

Particles within the crystalline core are assumed to h
Cxtal512 nearest neighbors. In the surface layer, partic
have Cs nearest neighbors, whereas in the bulk fluid th
have Cf nearest neighbors. From geometric considerati
the variation ofCs with R can be determined for a crysta
with a densely packed surface layer@30#. For crystals with
the rare surface layers assumed here, this variation is m
complex and is assumed to be of the form

Cs~R!5Cf1~Cs`2Cf !S 12expH z~Rmin2R!

2a J D , ~6!

wherez is an adjustable parameter chosen as discussed
low. Here,Cs` is the number of nearest neighbors of a p
ticle on the surface of an infinitely large crystal and is det
mined from considerations of the solid/fluid surface tensi
Rmin is the size of a crystal containing two particles. A pa
ticle in such a crystal is assumed to have the same numb
nearest neighbors as a particle in the bulk fluid.~Single par-
ticle crystals are not allowed in this model since dissociat
of particles from such crystals is meaningless.! Thus, when
R5Rmin ,Cs5Cf . By assuming such a crystal to be clo
packed (fxtal5fcp50.74), we find

Rmin5a~2/fcp!
1/3, ~7!

which sets the minimum size of a crystal in suspension. T
observed crystals are mixtures of rhcp and fcc structures
gests that crystal nuclei will not be spherical and their s
faces will not be smooth. More recent observations indic
that nuclei resemble ellipsoidal shapes more than sphe
@31#. However, the exact shape of the nuclei is complica
and we proceed with the spherical approximation for
present calculations. Again, we note that the form of E
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~6! is chosen to interpolate smoothly between two kno
limits with a single adjustable parameter.

IV. CRYSTAL NUCLEATION AND GROWTH

In a HS suspension of particle volume fractionf.fs ,
crystals nucleate at a steady state nucleation rate,I, that is a
function of the rate at which particles aggregate onto
crystal surface,b, and the rate at which particles leave th
crystal surface,a. a andb have dependencies on the crys
size such that small crystals shrink and large ones grow.
critical cluster size is defined at eachf as that size at which
a5b. The rate of formation of clusters of the critical siz
gives the nucleation rate,I.

To determinea andb, and henceI, we consider a crysta
nucleus of radiusR in a suspension of volume fractionf. Let
the crystal nucleus consist ofN particles,Ns of which lie in
a surface layer of thicknessa. Only some portion of each o
theseNs particles will lie entirely within the crystal. On an
average, the volume of this portion is given by@25#

Vs5
2

3
pa3F12

a

2RG . ~8!

Since the surface layer has a packing fractionfR , Ns varies
with R as

Ns52S R

a D 3

fR

@12~12a/R!3#

@12a/2R#
. ~9!

Two isolated HS particles in suspension experience o
volume exclusion interactions. However, the presence
other particles in a suspension induces local ordering of th
particles, characterized by the pair distribution functio
g(r ,f), wherer is the center-to-center separation betwe
the particles. This ordering gives rise to an interaction
tween these particles other than the infinite repulsion at c
tact, and is characterized by a potential of mean force,
fined as@27#

W~r ,f!52kT ln g~r ,f!. ~10!

The prominent primary maximum ing(r ,f) and the corre-
sponding minimum inW(r ,f) at r 52a for a dense suspen
sion, i.e.,f'0.5, indicates the propensity of two particles
such a suspension to stay in contact rather than separ
This may be treated as a net attraction between two parti
when they are sufficiently close to each other (r ,3a).

On the surface of a crystal, a particle is in contact withCs
other particles. If we assume that the potential of mean fo
is pair-wise additive, the surface particle will have an attra
tion energy ofCsW(2a,fR) binding it to the crystal. In the
fluid just surrounding the crystal surface, a particle hasCf
nearest neighbors. Therefore, the depth of the potential
in which a surface particle may be assumed to reside will

F5~Cs2Cf !W~2a,fR!52kT~Cs2Cf ! lnˆg~2a,fR!‰.
~11!
4-4
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KINETICS OF CRYSTALLIZATION IN HARD-SPHERE . . . PHYSICAL REVIEW E 64 041604
The motion of the particle in this potential well is describ
by the Smoluchowski equation@25,26#. Solving this equation
we obtain the mean residence time of the particle in t
well, T0 . The extent of the potential well is assumed to bea,
so that a particle on the surface escapes the well upon
versing an outward radial distancea. Then, the average dis
sociation rate at which particles escape the surface laye
calculated asa5Ns /T0 . Following Dixit and Zukoski@25#,
we obtain

a5
6DovfRR

a3@g~2a,fR!#Cs2Cf

@12~12a/R!3#

@12a/2R#

@11a/R#2

@~11a/R!321#
,

~12!

which for R@a simplifies to a56DovfRR/
a3@g(2a,fR)#Cs2C f. Here v50.2 is the approximate nea
field hydrodynamic contribution, reducing the diffusivity o
the particles on the surface fromDo , the Stokes–Einstein
diffusivity of the single particles in suspension@25#. The
contact value of the pair distribution function is related to t
osmotic pressure in the fluid phase as 4pa3Pf /3fkT51
14fg(2a,f) @27#. Combined with the Carnahan–Starlin
equation of state@Eq. ~1!#, this yields

g~2a,f!5
12f/2

~12f!3 . ~13!

The aggregation rate of particles,b, occurring via gradi-
ent diffusion, is given by a solution of the standard diffusi
equation. Following Dixit and Zukoski@25#, we find that for
a crystal of radiusR in a suspension of bulk volume fractio
f

b5
3R

a3 S 11
a

RD E
fR

f

D~f8!df8. ~14!

Here,D(f) is the gradient diffusivity of the particles in sus
pension and is given by

D~f!5DoK~f!
]

]f
„fZ~f!…, ~15!

whereK(f) is the hydrodynamic contribution to the diffu
sivity and is approximated as

K~f!5~12f!6.55 ~16!

for hard spheres@32#. The thermodynamic contribution
]„fZ(f)…/]f, is evaluated using the Carnahan–Starli
equation of state, whereZ(f)54pa3Pf /3fkT.

The calculation ofa and b from the above expression
requires knowledge of two parameters,Cs`2Cf and fRS,
and links back to the crystal structure described in Sec.
To determineCs` , we note that the energy of formation of
crystal of radiusR, containing a total ofN particles, is ap-
proximately given by
04160
s

a-

is

I.

U5~1/2!@2~N2Ns!CxtalkT ln g~2a,fxtal!

2NsCskT ln g~2a,fR!1NCfkT ln g~2a,f!#.

~17!

Rearranging to group terms linear inNs results in

U52~1/2!N@CxtalkT ln g~2a,fxtal!2CfkT ln g~2a,f!#

1~1/2!Ns@CxtalkT ln g~2a,fxtal!2CskT ln g~2a,fR!#,

~18!

where we follow Narasimhan and Ruckenstein@26# to define
the second term in Eq.~18! to correspond to the surfac
energy contribution in the formation of a crystal. WhenR
@a, this is written as 4pR2g, where g is the solid/fluid
surface tension. Thus whenf'fs and fR'fRS, we find
Ns'6R2fRS/a2 andCs'Cs` yielding

ga2

kT
5

3fRS

4p
@Cxtal ln g~2a,fxtal!2Cs` ln g~2a,fRS!#.

~19!

From studies in the literature, for example, the work of Ma
and Gast@33#, a reasonable estimate for the surface energ
a HS crystal is given byga2/kT50.16. AssumingCxtal
512, and knowingg(2a,f) for all f, Eq. ~19! provides one
equation linkingfRS andCs` .

A second condition for determining the unknown equili
rium parameters can be obtained by noting that under
same conditions, i.e.,f5fs andfR5fRS, the critical clus-
ter size diverges, so that,a5b as R→`. This gives, from
known expressions fora andb for R@a

E
fRS

fs D.~f8!

Do
df85

2vfRS

@g~2a,fRS!#
Cs`2Cf

. ~20!

Equation~20! links fRS and Cs`2Cf . Cf can be deter-
mined from simulations@34# or from an integral ofg(r ,f),
as has been done in the work of Chang and Sandler@35#.
Knowing Cf , Eqs.~19! and ~20! can be solved to findfRS
andCs` .

With both the parameters,fRS and Cs`2Cf , known, a
andb can be calculated as functions ofR andf from Eqs.
~5!–~7!,~12!–~16!. At any f.fs , a critical cluster size,R* ,
is defined as that size at whicha5b. Thus,R* is obtained
by equating Eqs.~12! and ~14! and solving forR.

Assuming the background particle volume fraction to
main constant, a population balance yields the steady s
nucleation rate as@25#

I 5
3bf

8pa3 S w9~N* !

p D 1/2

exp„2w~N* !…, ~21!

where

w~N!5E
0

N b2a

b1a
dN ~22!
4-5
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NARENDRA M. DIXIT AND CHARLES F. ZUKOSKI PHYSICAL REVIEW E64 041604
andN5fxtal(R/a)3 is the number of particles in a crystal o
size R. N* is the number of particles in a crystal of th
critical size, R* , and w9(N* ) is the second derivative o
w(N) with respect toN, evaluated atN* .

The difference betweena and b determines the growth
velocity of a crystal. From a differential volume balance, w
obtain for a crystal of sizeR in a suspension of volume
fraction f

dR

dt
5

~b2a!a3

3R2fR
. ~23!

Using these equations, we present calculations of nu
ation rates and growth velocities and compare them w
experimental observations in the next section.

V. CALCULATION OF NUCLEATION AND GROWTH
RATES

We compare our model calculations with the experime
of Palberg@15# who studied the crystallization of HS pa
ticles of radii a5435 nm under conditions where th
Stokes–Einstein diffusivity of the particles in suspension
Do55.031029 cm2/s. When the colloid volume fraction,f,
exceeds the solubility limit,fs50.495, the particles crystal
lize into structures withCxtal512 nearest neighbors. In thi
range of volume fractions, following previous estimat
@34,35#, we let the number of nearest neighbors of partic
in the bulk fluid beCf59 and assume that this does not va
with f.

To determine nucleation rates, Eqs.~19! and~20! must be
solved simultaneously to findfRS and Cs` . The equations
can be simplified by lettingfRS'fs in Eq. ~19! and noting
that whenf5fs50.495,fxtal50.55, so that lng(2a,fxtal)
' ln g(2a,fs). Then, solving Eq.~19! with ga2/kT50.2, we
find Cs`511. With Cs`2Cf5112952, solving Eq.~20!
yields fRS50.486, in agreement with our initial assumptio
that fRS'fs .

Knowing these parameters, the dependence of the sur
packing fraction,fR , on f, and the dependence of the num
ber of nearest neighbors,Cs , of a surface particle on the
crystal sizeR can be determined from Eqs.~5! and ~6!, re-
spectively. These dependencies are shown in Figs. 3 and
functions of the parametersj andz. The choices ofj andz
are crucial to the quantitative capabilities of the nucleat
rate model. The difference betweenf and fR provides the
requisite concentration gradient for the aggregation of p
ticles from the bulk suspension onto a crystal surface
sets the magnitude of the aggregation rate. This gradie
small whenf'fs and f'f rcp and goes through a max
mum at an intermediatef. The parameterj determines the
location of this maximum and, therefore, the location of t
maximum in the nucleation rate. Similarly,Cs determines the
magnitude of the potential well in which surface monom
lie and sets the magnitude of their dissociation rate. By va
ing z, the dissociation rate, the critical cluster size an
hence, the nucleation and growth rates can be varied q
sensitively. Here, we choosej and z to match the known
growth rate data for hard-sphere crystals.
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Using small angle light scattering and Bragg scatteri
Palberg@15# measured crystal growth rates for the syste
discussed above forf50.535 and these data are reproduc
in Fig. 5. These data can be predicted using our model
require the integration of Eq.~23!. This latter equation cap
tures the growth of crystals bigger than the critical size,R* ,
alone. Crystals of sizeR* neither grow nor shrink, wherea
crystals of size smaller thanR* are predicted to shrink
Hence, the use of Eq.~23! requires the assumption that

FIG. 3. The surface packing fraction calculated using Eq.~5! as
a function of the bulk volume fraction for several values of t
parameterj.

FIG. 4. The number of nearest neighbors of a particle on
crystal surface,Cs , in excess of that in the bulk fluid,Cf , calcu-
lated using Eq.~6! as a function of the crystal sizeR for several
values of the parameterz.
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concentration fluctuation produces a crystal of size big
thanR* at some timet. Here, drawing from the experimenta
data, we assume that a crystal of radiusR54 mm exists in
the suspension at timet515 min. The subsequent evolutio
of this crystal is predicted by integrating Eq.~23!. This is
shown in Fig. 5 for the valuesj52 andz50.7 which, we
find, provide the best agreement with the experimental d
We use these values for all further calculations.

The parametersj andz can be linked to the curvature an
the volume fraction dependence of the solid/fluid surfa
tension. We note that the second term in Eq.~18! corre-
sponds to the surface energy contribution to the formation
a crystal of sizeR in a suspension of volume fractionf.
Therefore, equating it to 4pR2g(R,f), we obtain

g~R,f!a2

kT
5

fRR

4pa

„12~12a/R!3
…

~12a/2R!
@Cxtal ln g~2a,fxtal!

2Cs ln g~2a,fR!#. ~24!

Here, the parameterj determines the dependence ofg on f,
entering Eq.~24! via fR , andz determines the dependenc
of g on R via Cs . For the above values ofj andz, in Fig. 6
we showg as a function ofR for two different values off
predicted by Eq.~24!. In these calculations, we have a
sumed that lng(2a,fxtal)' ln g(2a,fR). The calculations sug
gest that in the rangefs,f,0.55, where Eq.~13! is known
to predictg(2a,f) accurately,g is nearly independent off.
The dependence onR, however, is more sensitive. AsR in-
creases aboveRmin , g decreases rapidly, passes through
weak minimum, and plateaus at very large values ofR. These
trends are in qualitative agreement with previous calculati

FIG. 5. Time evolution of the size of a growing crystal observ
via small angle light scattering~triangles! and Bragg scattering
~squares! under identical conditions~see Ref.@15#!. The solid line is
obtained by integrating Eq.~23! as described in the text with th
parametersj52 andz50.7.
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@36–45#. The insensitivity ofg to f is argued to be observe
in systems whereCs is independent off @36#, as is assumed
in our model.

The dependence ofg on R is described using the simpli
fied Tolman equation,g(R)5g`(122d` /R), whereg` is g
for the planar interface (R→`) andd`(!R) is d, the Tol-
man length, again forR→` @37#. Simplifying Eq. ~24! to
terms linear ina/R and comparing it with the Tolman equa
tion, we find thatd`'a/4, in reasonable agreement wit
previous calculations@38–40#. The Tolman lengthd for
smaller R is predicted to have a strong dependence onR
@40,41#. Depending on whetherd is positive or negative,g is
found to increase or decrease, respectively, upon increa
R. Thus, the nonmonotonic variation ofg with R predicted
by Eq. ~24! indicates thatd changes sign upon increasingR.
Similar nonmonotonic variations ing and corresponding
changes in the sign ofd have been predicted in previou
studies@41–43#. Further, we note that the work of Israelac
vili @44# and Sinanoglu@45# suggests that over a broad ran
of droplet sizes,g is independent ofR, but begins to vary
whenR is on the order of the size of the particles constituti
the fluid. In reasonable agreement, we find that theg be-
comes independent ofR ~as suggested by the onset of th
plateau in Fig. 6! whenR'10a.

Having set the values of the parametersj andz, a andb
can be calculated for allR andf. Shown in Fig. 7 area and
b as functions ofR for f50.5. For a fixed value off, a
.b for small R, and vice versa for largeR. Thus, small
crystals shrink and large crystals grow. The critical clus
size R* occurs whena5b. At a fixed value ofR, a de-
creases monotonically upon increasingf as g(2a,fR) in-
creases monotonically. On the other hand,b first increases
and then decreases upon increasingf. This behavior is gov-
erned by the difference betweenfR and f, which goes

FIG. 6. Solid/fluid surface tension as a function of the crys
size calculated via Eq.~24! for two values of the bulk volume
fraction.
4-7
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through a maximum upon increasingf ~see Fig. 3!. Thus,
upon increasingf above but close tofs , a decreases andb
increases, resulting in a decrease inR* . At much larger val-
ues off, while a continues to decrease,b begins to decreas
as well. Here,b is a stronger function off thana and results
in an increase inR* with f. R* therefore goes through
minimum upon increasingf. Shown in Fig. 8 are calcula
tions ofR* as a function off. R* diverges atf5fs and at
f5f rcp, by construct, and passes through a minimum
f'0.56.

FIG. 7. Dissociation~a! and aggregation~b! rates calculated as
functions of the crystal size at a suspension volume fractionf of
0.5. The point of intersection of the two curves gives the criti
cluster sizeR* at that volume fraction.

FIG. 8. Critical cluster size as a function of volume fraction.
04160
t

In Fig. 9, we present calculations of nucleation ratesI,
from Eq.~21!. In accordance with classical theories,I is zero
when f5fs , and increases upon increasingf due to the
increasing thermodynamic driving force for crystallizatio
At larger f, however,I is reduced due to hydrodynamic e
fects. A maximum occurs atf'0.56. Shown in the same
figure are nucleation rates determined via scattering exp
ments by Palberg@15#. Note that there are no adjustable p
rameters used in this figure. Excellent agreement is seen
tween the experimental results and model calculations.
model predicts the experimental nucleation rates accura
until f'0.56. Beyondf'0.56, the model tends to overpre
dict the experimental data. One reason for this may be att
uted to the intervening glass transition, which occurs atf
'0.58. In the absence of a glass transition, as assume
this model, particle jamming occurs at the random clo
packing volume fraction,f rcp50.64. However, a glass tran
sition forces jamming atf'0.58, resulting in much lower
nucleation rates in this volume fraction range than predict

Also shown in the same figure are nucleation rates e
mated by Schatzel and Ackerson@16# and Harland and van
Megen @24# from scattering experiments, and by Auer a
Frenkel@46# from simulations. The discrepancy between t
results of independent experiments and between experim
and simulations is glaring. Auer and Frenkel argue that
reason for the discrepancy lies in the interpretation of
experiments. Classical nucleation theory has been show
capture the experimental nucleation rates, although with
surface tension,g, as the adjustable parameter. Auer a

l

FIG. 9. Nucleation rate as a function of volume fraction calc
lated ~solid line! via Eq. ~21! and compared to the experiment
estimates from Palberg~see Ref.@15#! ~filled squares!, Schatzel and
Ackerson~see Ref.@16#! ~circles!, maximum ~checkered squares!
and average~dotted squares! nucleation rates from Harland and va
Megen~see Ref.@24#!, and from simulations of monodisperse~1!
and polydisperse~3! hard sphere systems by Auer and Frenkel~see
Ref. @46#!.
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Frenkel find that the values ofg obtained from such fits
(ga2/kT'0.12) are lower than those obtained from fits
their simulation data (ga2/kT'0.18). However, more recen
experiments involving the real space imaging of the nuc
ation of crystals of slightly charged spheres@31# have pro-
vided estimates ofg(ga2/kT'0.03) that are much lowe
than the estimates from fits using classical theory. The
ported nucleation rate estimates from these experim
~e.g., I'1.0 mm23 s21 at f'0.5, which corresponds to
32Ia5/Do'1025 at feff'0.56! are comparable to the othe
experimental estimates. Thus, the discrepancy between
nucleation rates estimated from different experiments
simulations remains a matter of concern. More detailed
space experiments may resolve these differences.

Finally, we note that the growth rate predictions of E
~23! agree with the dynamical scaling of crystal growth o
served experimentally. Schatzel and Ackerson@16# find that
at long times, crystal growth follows theR;t1/2 scaling
when f lies in the coexistence region, i.e.,fs,f,0.55.
~For f.0.55, this scaling could not be unambiguously ide
tified.! In our model, such a scaling emerges in the limit
large crystal sizes,R@a. Under these conditions, botha and
b scale as;R. Then, Eq.~23! simplifies to dR/dt;1/R,
integrating which yields theR;t1/2 scaling. Further, as
shown in Fig. 5, rigorous integration of Eq.~23! captures the
time evolution of growing crystals quantitatively. Ackerso
and Shatzel@12# and Russelet al. @47# predict this scaling
from their adaptations of the classical growth models. Fo
comparison with their predictions, we present in Fig. 10
mensionless growth ratesdX/dt calculated using Eq.~23! as
functions ofX for several values off. Here,X5R/R* is the
dimensionless crystal radius andt5tDo /(R* )2 is the di-
mensionless time.dX/dt is zero forX51 as at this point
a5b for all f. For X.1, dX/dt increases asX increases,
reaches a maximum, and finally decays to zero asymp

FIG. 10. Nondimensional growth rates calculated using Eq.~23!
as functions of the reduced crystal size for several volume fracti
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cally for largeX. The maximum, occurring atX;2, corre-
sponds to the minimum ina @or, to be precise, the maximum
in (b2a)/R2# as indicated in Fig. 7 which sets the magn
tude of the growth rate in Eq.~23!. The asymptotic decay is
due to the 1/R dependence of the growth rate forR@a as
described above. This behavior is in excellent agreem
with the calculations of Russelet al. @47# for f,0.55. The
maximum in their calculations, which also occurs atX;2, is
attributed to the effects of surface tension. Forf.0.55, the
assumption of no surface tension in their model yields a s
independent growth rate according to the classical Wilso
Frenkel growth law.

The model presented here thus captures quantitatively
perimental observations of the kinetics of crystallization
HS suspensions. While doing so, we note that it employ
completely kinetic description of nucleation that differs si
nificantly from classical theories. Models based on class
nucleation theory employ combinations of thermodynam
and kinetic descriptions. These models are also able to
dict similar experimental data reasonably well, albeit w
some adjustable parameters. At this point, which of these
approaches provides a more accurate description of
mechanism of nucleation needs to be determined. A sure
of the validity of one approach over the other lies in th
predictions of the dependence ofR* on f. According to the
present model,R* is defined kinetically and passes through
minimum upon increasingf. Classical theories, on the othe
hand, defineR* from thermodynamics alone, as the size
which the free energy change associated with crystal for
tion is a maximum.R* , therefore, decreases monotonica
upon increasingf. Unfortunately, experiments measurin
R* beyondf50.56, where the present model predicts t
minimum, have not yet been performed.

VI. CONCLUSIONS

The kinetics of crystallization in HS suspensions is ca
tured well by the model presented here. Upon increasing
particle volume fraction in suspension above the solubi
point, an increase in the thermodynamic driving force
crystallization enhances the nucleation rate. At very high v
ume fractions, however, the concentration gradient betw
the surface of a crystal nucleus and the bulk suspension
minishes. The aggregation of particles onto the crystal s
face, being driven by gradient diffusion, also diminishes,
ducing the nucleation rate. As a result of these compe
influences, a maximum in the nucleation rate is predicted
an intermediate volume fraction of about 0.56. Model p
dictions of nucleation rates and growth velocities show
cellent agreement with experimental observations.

To make quantitative comparisons with data, the mo
introduces two adjustable parameters to characterize
structure of the surface of a growing crystal. We show t
these parameters correspond to the curvature and the vo
fraction dependence of the solid/fluid surface tension, wh
are typically used as adjustable parameters in classical nu
ation theories. Our model, however, differs from the classi
approach by building a completely kinetic description of t

s.
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nucleation mechanism. The two approaches make very
ferent predictions for the variation of the critical cluster si
with volume fraction. While the present model predicts
minimum, the classical approach predicts a monotonic
crease in the critical cluster size with increasing volume fr
tion. Measurements of the critical cluster sizes at differ
volume fractions would thus provide for an experimen
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